
COMP 122/L Lecture 6

Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

Assembly

What’s in a Processor?

Simple Language

• We have variables,integers,addition, and assignment

• Restrictions:

• Can only assign integers directly to variables

• Can only add variables, always two at a time

x = 5;
y = 7;
z = x + y;

Want to say:
z = 5 + 7;

Translation

Implementation

• What do we need to implement this?

x = 5;
y = 7;
z = x + y;

Core Components

• Some place to hold the statements as we operate
on them

• Some place to hold which statement is next

• Some place to hold variables

• Some way to add numbers

Back to Processors

• Amazingly, these are all the core components of a
processor

• Why is this significant?

Back to Processors

• Amazingly, these are all the core components
of a processor

• Why is this significant?

• Processors just reads a series of statements
(instructions) forever.No magic.

Core Components

• Some place to hold the statements as we operate on
them

• Some place to hold which statement is next

• Some place to hold variables

• Some way to add numbers

Core Components
• Some place to hold the statements as we operate on

them - memory

• Some place to hold which statement is next -
program counter

• Some place to hold variables - registers

• Behave just like variables with fixed names

• Some way to add numbers – arithmetic logic unit
(ALU)

• Some place to hold which statement is currently being
executed – instruction register (IR)

Basic Interaction

• Copy instruction from memory at wherever the
program counter says into the instruction register

• Execute it,possibly involving registers and the arithmetic
logic unit

• Update the program counter to point to the next
instruction

• Repeat

Basic Interaction

initialize();
while (true) {

instruction_register =
memory[program_counter];

execute(instruction_register);
program_counter++;

}

-initialize() will load in the initial state, and put instructions in memory
-execute(instruction_register) will read the instruction and do what it says, potentially looking
at registers, assigning things to registers, and using the arithmetic logic unit
-Have this handy while going through next animation

Memory

?

Registers

x: ?
y: ?
z: ?

Program Counter

?

Instruction Register

?

Arithmetic Logic Unit

?

-All the hardware, before initialization

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: ?
y: ?
z: ?

Program Counter

0

Instruction Register

?

Arithmetic Logic Unit

?

-Initialization occurs. Instructions are in memory, and the program counter is set to 0.
-In a real processor, there is some very basic initialization when it boots up, at which point the BIOS
(and subsequently the OS) take over. From then on, its the responsibility of whatever is loaded in to
set the contents of memory, the registers, and the program counter correctly. The operating systems
class covers this stuff.

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: ?
y: ?
z: ?

Program Counter

0

Instruction Register

x = 5;

Arithmetic Logic Unit

?

-We load instruction 0 into the instruction register

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

x: 5

Registers

y: ?
z: ?

Program Counter

0

Instruction Register

x = 5;

Arithmetic Logic Unit

?

-We execute the instruction, setting register x to 5

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: ?
z: ?

Program Counter

1

Instruction Register

x = 5;

Arithmetic Logic Unit

0 + 1 = 1

-We update the program counter

1: y = 7;

Memory

0: x = 5;

2: z = x + y;

Registers

x: 5
y: ?
z: ?

Program Counter

1

Instruction Register

y = 7;

Arithmetic Logic Unit

?

-Load in the next instruction

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

7

Registers

x: 5
y:
z: ?

Program Counter

1

Instruction Register

y = 7;

Arithmetic Logic Unit

?

-We execute the instruction, setting register y to 7

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: ?

Program Counter

2

Instruction Register

y = 7;

Arithmetic Logic Unit

1 + 1 = 2

-We update the program counter

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: ?

Program Counter

2

Instruction Register

z = x + y;

Arithmetic Logic Unit

?

-Load in the next instruction

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

5

Registers

x:
y: 7
z: ?

Program Counter

2

Instruction Register

z = x + y;

Arithmetic Logic Unit

5 + 7 = 12

-Execute it, consulting the registers to get the values of x and y
-This consults the ALU

Memory

0: x = 5;
1: y = 7;
2: z = x + y;

Registers

x: 5
y: 7
z: 12

Program Counter

2

Instruction Register

z = x + y;

Arithmetic Logic Unit

5 + 7 = 12

-The ALU sets the result

ARM

https://en.wikipedia.org/wiki/ARM_architecture

Why ARM?

• Incredibly popular in embedded devices

• Much simpler than Intel processors

-Embedded devices include things like phones and microwaves.
-Your computer may have an ARM processor in it even though the “main” processor is from
Intel

Code on ARM

x = 5;
y = 7;
z = x + y;

Original ARM
mov r0, #5
mov r1, #7
add r2, r0, r1

Code on ARM

Original ARM
mov r0, #5
mov r1, #7
add r2, r0, r1

x = 5;
y = 7;
z = x + y;

move: put the givenvalue
into a register

r0: register 0

Code on ARM

Original ARM
mov r0, #5
mov r1, #7
add r2, r0, r1

x = 5;
y = 7;
z = x + y;

move: put the givenvalue
into a register

r1: register 1

Code on ARM

Original ARM
mov r0, #5
mov r1, #7
add r2, r0, r1

x = 5;
y = 7;
z = x + y;

add: add the rightmost
registers, putting the result
in the first register

r2: register 2

Available Registers

• 17 registers in all

• 16“general-purpose”

• 1“special-purpose”

• For the moment,we will only consider registers
r0 - r12

-General purpose: can put values in them and take values out as I please
-Special purpose: holding certain flags. Can manipulate this, but not in the same way as a
general-purpose register

Assembly

• The code that you see below is ARM assembly

• Assembly is *almost* what the machine sees. For the
most part,it is a direct translation to binary from here
(known as machine code)

mov r0, #5
mov r1, #7
add r2, r0, r1

-More on why I said “the most part” later. Psuedo instructions are translated to other
instructions. Branches also need calculation to occur (for labels), and there are caveats about
the instruction immediately after a branch

Workflow

Assembler
(analogous to a compiler)

Machine Code

001101....

Assembly

mov
mov
add

r0,
r1,
r2,

#5
#7
r0, r1

Machine Code

• This is what the process actually executes and
accepts as input

• Each instruction is represented with 32 bits

add r2, r0, r1

-Converting to machine code is mostly one-to-one: just put the right bits in the right places
-There are some exceptions where we have to be a bit smarter, but not much smarter.
Assemblers are nowhere near as complex as compilers.

Registers

r0: ?
r1: ?
r2: ?

Program Counter

?

Arithmetic Logic Unit

?

Memory

?

Instruction Register

?

-All the hardware, before initialization

Registers

r0: ?
r1: ?
r2: ?

Program Counter

0

Arithmetic Logic Unit

?

Memory

0: mov r0, #5
4: mov r1, #7
8: add r2, r0, r1

Instruction Register

mov r0, #5

-We load instruction 0 into the instruction register

Registers

r0: 5
r1: ?
r2: ?

Program Counter

0

Arithmetic Logic Unit

?

Memory

0: mov r0, #5
4: mov r1, #7
8: add r2, r0, r1

Instruction Register

mov r0, #5

-We execute the instruction, setting register r0 to 5

Registers

r0: 5
r1: ?
r2: ?

Program Counter

4

Arithmetic Logic Unit

0 + 4 = 4

Memory

0: mov r0, #5
4: mov r1, #7
8: add r2, r0, r1

Instruction Register

mov r0, #5

-We update the program counter
-Note that we add 4 instead of one, as instructions are four bytes long

Registers

r0: 5
r1: ?
r2: ?

Program Counter

4

Arithmetic Logic Unit

?

4: mov r1, #7

Memory

0: mov r0, #5

8: add r2, r0, r1

Instruction Register

mov r1, #7

-Load in the next instruction

7

Registers

r0: 5
r1:
r2: ?

Program Counter

4

Arithmetic Logic Unit

?

Memory

0: mov r0, #5
4: mov r1, #7
8: add r2, r0, r1

Instruction Register

mov r1, #7

-We execute the instruction, setting register r1 to 7

Registers

r0: 5
r1: 7
r2: ?

Program Counter

8

Arithmetic Logic Unit

4 + 4 = 8

Memory

0: mov r0, #5
4: mov r1, #7
8: add r2, r0, r1

Instruction Register

mov r1, #7

-We update the program counter

Registers

r0: 5
r1: 7
r2: ?

Program Counter

8

Arithmetic Logic Unit

?

Memory

0: mov r0, #5
4: mov r1, #7
8: add r2, r0, r1

Instruction Register

add r2, r0, r1

-Load in the next instruction

Registers

r0: 5
r1: 7
r2: ?

Program Counter

8

Arithmetic Logic Unit

5 + 7 = 12

Memory

0: mov r0, #5
4: mov r1, #7
8: add r2, r0, r1

Instruction Register

add r2, r0, r1

-Execute it, consulting the registers to get the values of r0 and r1
-This consults the ALU

Registers

r0: 5
r1: 7
r2: 12

Program Counter

8

Arithmetic Logic Unit

5 + 7 = 12

Memory

0: mov r0, #5
4: mov r1, #7
8: add r2, r0, r1

Instruction Register

add r2, r0, r1

-The ALU sets the result

Adding More
Functionality

• We need a way to display the result

• What does this entail?

-Actually quite the tall order

Adding More
Functionality

• We need a way to display the result

• What does this entail?

• Input/output.This entails talking to devices, which
the operating system handles

• We need a way to tell the operating system to
kick in

-Actually quite the tall order

Talking to the OS

• We are going to be running on an ARM simulator,
ARMSim#

• We cannot directly access system libraries (they
aren’t even in the same machine language)

• How might we print something?

ARMSim# Routines

• ARM features a swi instruction, which triggers a
software interrupt

• Outside of a simulator, these pause the program
and tell the OS to check something

• Inside the simulator, it tells the simulator to check
something

swi

• So we have the OS/simulator’s attention. But how
does it know what we want?

swi

• So we have the OS/simulator’s attention. But how
does it know what we want?

• swi operand: integer saying what to do

• The OS/simulator can also read the registers to
get extra information as needed

-”Integer saying what to do”: e.g., we agree that “5” means “print something”
-With reading the registers, these could include exactly what to print

(Finally) Printing an
Integer

• ForARMSim#,the integer that says“print an integer”
is 0x6B

• Register r1 holds the integer to print

• Register r0 holds where to print it; 1 means “print
to standard output (screen)”

-Other SPIM utilities available via syscall: https://www.doc.ic.ac.uk/lab/secondyear/spim/
node8.html

Augmenting with
Printing

mov
mov
add

r0,
r1,
r2,

#5
#7
r0, r1

mov r1, r2 ; r1: integer to print
mov
swi

r0,
0x6B

#1 ;
;

r0: where to print it
0x6B: print integer

Exiting

• If you are using ARMSim#, then you needto say when
you are done as well

• How might this be done?

Exiting

• If you are using ARMSim#, then you needto say when
you are done as well

• How might this be done?
•swi with a particular operand (specifically 0x11)

Augmenting with Exiting

mov
mov
add

r0,
r1,
r2,

#5
#7
r0, r1

mov r1, r2 ; r1: integer to print
mov
swi

r0,
0x6B

#1 ;
;

r0: where to print it
0x6B: print integer

swi 0x11 ; 0x11: exit program

Making it a Full
Program

• Everything is just a bunch of bits

• We need to tell the assembler which bits should be
placed where in memory

-Image source: https://en.wikipedia.org/wiki/Data_segment
-Representation of a program in memory
-What do you recognize?

Allocated as
Program Runs

-Image source: https://en.wikipedia.org/wiki/Data_segment
-You’ve seen these two before
-What might the rest be?

Constants
(e.g.,strings)

Mutable Global
Variables

Code

Everything Below is
Allocated at

Program Load

Allocated as
Program Runs

-Image source: https://en.wikipedia.org/wiki/Data_segment

Process Memory
Map

Marking Code

mov
mov
add

mov

r0,
r1,
r2,

r1,

#5
#7
r0, r1

r2
mov
swi

r0,
0x6B

#1

swi 0x11

Use a .text directive to specify code section

.text

-Directives tell the assembler to do something

Marking Code
Use a .data directive to specify data section

.data
string1:

.asciz “hello”
string2:

.asciz “bye”

-Directives tell the assembler to do something

ARMSim# Demo:
hello.s

ARMSim# Demo:
arithmetic_ops.s

ARMSim# Demo:
read_and_print_int.s

